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Abstract

Purpose – This paper sets out to present a fully explicit smoothed particle hydrodynamics (SPH)
method to solve non-Newtonian fluid flow problems.

Design/methodology/approach – The governing equations are momentum equations along with
the continuity equation which are described in a Lagrangian framework. A new treatment similar to that
used in Eulerian formulations is applied to viscous terms, which facilitates the implementation of
various inelastic non-Newtonian models. This approach utilizes the exact forms of the shear strain rate
tensor and its second principal invariant to calculate the shear stress tensor. Three constitutive laws
including power-law, Bingham-plastic and Herschel-Bulkley models are studied in this work. The
imposition of the incompressibility is fulfilled using a penalty-like formulation which creates a trade-off
between the pressure and density variations. Solid walls are simulated by the boundary particles whose
positions are fixed but contribute to the field variables in the same way as the fluid particles in flow field.

Findings – The performance of the proposed algorithm is assessed by solving three test cases including
a non-Newtonian dam-break problem, flow in an annular viscometer using the aforementioned models and
a mud fluid flow on a sloping bed under an overlying water. The results obtained by the proposed SPH
algorithm are in close agreement with the available experimental and/or numerical data.

Research limitations/implications – In this work, only inelastic non-Newtonian models are
studied. This paper deals with 2D problems, although extension of the proposed scheme to 3D is
straightforward.

Practical implications – This study shows that various types of flow problems involving
fluid-solid and fluid-fluid interfaces can be solved using the proposed SPH method.

Originality/value – Using the proposed numerical treatment of viscous terms, a unified and
consistent approach was devised to study various non-Newtonian flow models.
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Paper type Research paper

1. Introduction
Production and processing of Rheologically complex materials is a thriving industry
which deals with many millions of tones of materials per year. Examples of such
materials can be found in the case of solutions and melts of macro-molecules, that is,
polymeric materials and biological systems. Processes for manufacturing of coated
sheets, optical fibers and plastics are amongst other examples. Obviously, a better
understanding of the physical and mechanical behavior of such materials is essential to
devise efficient production methods and economical manufacturing procedures.

There has been a tremendous amount of research in response to demand for
characterization, modeling and simulation of rheological materials (Baaijens, 1998;
Bingham, 1922; Bird et al., 1987; Owens and Phillips, 2002). An important class of
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non-Newtonian fluids is represented by the so-called inelastic models which describe a
large group of complex materials. Three examples of this model are the power-law,
Herschel-Bulkley and Bingham-plastic models. In these models, viscosity is a function
of invariants of deformation-rate tensor. From a numerical point of view, a challenging
feature of these models is their multi-valued behavior. Flows of such fluids exhibit
regions of plug flow and inelastic flow with large shear deformation. Below a particular
yield stress, local shear rates are zero with no fluid deformation. When the local stress
exceeds the yield stress, the fluid undergoes deformation. In this case, a yield surface
separates the solid-like plug flow and the viscous flow regions. A simple treatment of
such fluids is achieved by using a bi-viscosity model. Unlike the theoretical behavior,
however, the bi-viscosity model allows fluid motion or yielding even below the yield
point. An alternative to the bi-viscosity model is to solve for the shape of the yield
surface together with velocity and pressure fields in the fluid portion of the material.

In recent years, significant progress has been made in the context of computational
rheology. Several numerical methods have been devised to study non-Newtonian fluid
flows with different degrees of success (Bose and Carey, 1999; Matallah et al., 2002;
Webster et al., 2004; Vola et al., 2004; Renardy, 2000). More specifically, Galerkin finite
element methods have been used for analysis of Bingham-plastic fluids but exhibit
appreciable errors in the calculated shear rates and viscosities (Bose and Carey, 1999).
These methods also require satisfaction of the LBB consistency condition which places
a restriction on the stress approximation space in non-Newtonian flows and increases
computational cost. Moreover, in shear-thinning inelastic models like the power-law
model, local viscosity may reduce significantly resulting in high-mesh Reynolds
numbers for some elements and eventually unstability in the solution.

A viable numerical method for solving fluid flow problems is the so-called smoothed
particle hydrodynamics (SPH) method. The method uses a purely Lagrangian
approach and has been successfully employed in a wide range of problems. The SPH
method is a branch of meshless methods and unlike conventional Eulerian methods
does not use a fixed grid to represent the computational domain. That is the method
does not require connectivity data as needed by the finite volume and finite element
methods. This gives the method a very useful feature when dealing with complex flows
exhibiting large deformations and/or free-surfaces. Another useful feature of the
method is that its extension to 3D problems is particularly simple (Owen, 2004).

The SPH method is a particle-based method. The word “particle” does not mean a
physical mass, instead, it refers to a region in space. Field variables are associated to
these particles and at any other point in space are found by averaging, or smoothing,
the particle values over the region of interest. This is fulfilled by an interpolation or
weight function which is often called the interpolation kernel (Chaniotis et al., 2002).

The SPH method was originally developed by Lucy (1977) and Gingold and
Monaghan (1977) to solve compressible astrophysical problems. The method was later
extended to incompressible flows by Monaghan (1994) and Takeda et al. (1994). Several
other researchers have since contributed to the method and solved various engineering
problems including heat transfer (Chaniotis et al., 2002; Cleary et al., 2002), turbulent
flows (Welton, 1998), interfacial flows (Colagrossi and Landrini, 2003) and sloshing
(Kelecy and Fletcher, 1997; Koshizuka et al., 1995) problems.

An important aspect of solving incompressible flows using SPH is the way it handles
the incompressibility. There are various approaches to incorporate the incompressibility
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in SPH methods. One approach termed as “weakly compressible” solves the
incompressible flow as a compressible flow but with a very small Mach (M < 0.1)
number. This approach has acceptable results in flows with low-Reynolds number, but
errors increase un-acceptedly in fully confined moderate and high-Reynolds number
flows (Cummins and Rudman, 1999). Another approach which works for high-Reynolds
number flows is the particle method proposed by Koshizuka et al. (1995). In this
approach, a penalty-like formulation is employed to adjust the pressure where density
variations occur. An iterative process is used until density variations become less than a
specified tolerance. A similar approach was used in Koshizuka et al. (1998), where
instead of a penalty method, a pressure Poisson equation was solved with a source term
proportional to density variations.

Only recently non-Newtonian flows were investigated using the SPH methods.
Ellero et al. (2002) developed a numerical scheme based on the SPH method to study
viscoelastic fluid flows using a Maxwell model. Also, Shao and Lo (2003) presented a
SPH method to solve non-Newtonian flows with free surfaces using a modified form of
the so-called cross model.

In this paper, a new SPH algorithm is presented to solve non-Newtonian fluid flow
problems. The method is fully explicit in time and uses a three-step algorithm. An
approach similar to the traditional Eulerian-based methods is adopted for computing
viscous terms facilitating the description of non-Newtonian constitutive laws in SPH.
Below, first a brief description of the SPH method is given and various related
numerical issues are discussed. Then, the treatment of viscous terms particularly when
non-Newtonian fluid flows are studied is given. Three non-Newtonian models
including power-law, Herschel-Bulkley and Bingham-plastic models are described and
their implementation in a SPH context is elaborated. Finally, three test cases are solved
to demonstrate the performance of the proposed algorithm. The first test case is
a non-Newtonian dam-break problem. The second test case deals with flow in a
viscometer using different non-Newtonian models and the third test case investigates
a laminar non-Newtonian flow of mud on a mild slope.

2. Fundamentals
The SPH method is based on the interpolation theory. The method allows any function
to be expressed in terms of its values at a set of disordered points representing particle
positions using a kernel function. The kernel function refers to a weighting function
and specifies the contribution of a typical field variable, A(r), at a certain position, r, in
space. The kernel estimate of A(r) is defined as (Monaghan, 1992):

, AhðrÞ .¼

Z
V

Aðr0ÞW ðr2 r0; hÞdr0 ð1Þ

where V represents the solution space, the smoothing length h represents the effective
width of the kernel and W is a weighting function with the following properties:Z

V

W ðr2 r0; hÞdr0 ¼ 1
h!0
limW ðr2 r0; hÞ ¼ dðr2 r0Þ ð2Þ

If Aðr0Þ is known only at a discrete set of N point r1; r2; . . .rN ;, then Aðr0Þ can be
approximated as follows (Monaghan, 1992):
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Aðr0Þ ¼
XN
j¼1

dðr0 2 rjÞAðrjÞðdV Þj ð3Þ

where (dV)j is the differential volume element around the point rj. Combining
equations (1) and (3) yields (Schlatter, 1999):

, AhðrÞ .¼
XN
j¼1

Z
dðr0 2 rjÞAðrjÞðdV ÞjW ðr2 r0; hÞdr0 ð4Þ

After integration, and replacing the differential volume element (dV)j by mj=rj one gets
(Schlatter, 1999):

, AhðrÞ .¼
XN
j¼1

mj

rj
AjW ðr2 rj; hÞ ð5Þ

where the summation index j denotes a particle label and particle j carries a mass mj at
position rj, a density rj and a velocity vj. The value of A of j-th particle is shown by Aj.
The summation is over particles which lie within a circle of radius 2h centered at r.

2.1 Kernel function
The kernels used in the SPH method approximate a d function. Monaghan (1992)
suggests that a suitable kernel must have a compact support in order to ensure zero
interactions outside its computational range. The original calculations of Gingold and
Monaghan (1977) used a Gaussian kernel. Although this kernel satisfies the basic
requirements given by equation (2), it does not possess a compact support so its
computational efficiency is rather low (Hongbin and Xin, 2004). Various forms with a
compact support such as super-Gaussian (Monaghan and Gingold, 1983), spline
(Monaghan, 1985), polynomial (Gingold and Monaghan, 1982) and cosine (Fulk and
Quinn, 1996) kernels were proposed later. Recent studies (Monaghan, 1992; Morris et al.,
1997) indicate that the stability of the SPH algorithm depends strongly upon the second
derivative of the kernel. A kernel must be able to minimize the errors caused by using
the interpolation method. Monaghan (1992) analyzed the estimation errors of the
method and stated that the errors are proportional to h 2 when the kernel is an even
function of x, and to h 4 when the kernel satisfies the following relation (Hongbin and
Xin, 2004): Z

x 2W ðx; hÞdx ¼ 0 ð6Þ

One of the most popular kernels is based on spline functions (Monaghan, 1992) as
defined by:

W ðr; hÞ ¼
s

hm
£

1 2 3
2 s

2 þ 3
4 s

3 0 # s , 1

1
4 ð2 2 sÞ3 1 # s , 2

0 2 # s

8>><
>>: ð7Þ

Here, s ¼ jrj=h;m represents the number of dimensions ands is a normalization constant
which takes the values 2/3, 10/7p, 1/p in one, two and three dimensions, respectively.
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This kernel has compact support so that its interactions are exactly zero for r . 2h. The
first and second derivatives of this kernel are continuous implying that the interpolation is
not too sensitive to particle disorder. Also, the latter property means that the dominant
error term in the integral interpolant is O(h 2). Higher-order splines can be used, but they
interact with further particles and thus require more computational time.

It should be added that the SPH methods work best when the number of
neighboring particles is between 20 and 30 in 2D cases. One way to maintain this
number is to adjust the smoothing length of the particles dynamically. It is also vital to
use the same smoothing length when calculating the forces exchanged between two
neighboring particles, say i and j. Otherwise, the conservation of momentum is
violated. In SPH, it is common to compute the smoothing length associated with
particles i and j according to hij ¼ ðhi þ hjÞ=2 where hi and hj may be calculated using
an appropriate rule described in Schlatter (1999).

2.2 Gradient and divergence
The gradient and divergence operators need to be formulated in a SPH algorithm if
simulation of the Navier-Stokes equations is to be attempted. In this work, the
following commonly used forms are employed for gradient of a scalar A and
divergence of a vector u (Colagrossi and Landrini, 2003):

1

ri
7iA ¼

j

X
mj

Ai

r2
i

þ
Aj

r2
j

 !
7iW ij ð8Þ

1

ri
7i ·ui ¼

j

X
mj

ui

r2
i

þ
uj

r2
j

 !
7iW ij ð9Þ

where 7iW ij is gradient of the kernel function W ðjr i 2 rjj; hÞ with respect to ri , the
position of particle i. This choice of discretization operators ensure that an exact
projection algorithm is produced. There are a number of different ways of representing
these operators some of which proven to be more convenient in terms of accuracy and
robustness of the method (Bonet and Lok, 1999).

2.3 Laplacian formulation
A simple way to formulate the Laplacian operator is to envisage it as dot product of the
divergence and gradient operators. This approach proved to be problematic as the
resulting second derivative of the kernel is very sensitive to particle disorder and when
dealing with the Navier-Stokes equations can easily lead to pressure instability and
decoupling in the computation due to the co-location of the velocity and pressure. In this
paper, the following alternative approach is adopted (Cummins and Rudman, 1999):

7
1

r
7A

� �
i

¼
j

X
mj

8

ðri þ rjÞ
2

Aijr ij ·7iW ij

jr2
ijj þ h 2

ð10Þ

where Aij ¼ Ai 2 Aj; r ij ¼ ri 2 rj and h is a small number introduced to avoid a zero
denominator during computations and is set to 0.1 h.

A fully explicit
three-step SPH

algorithm

719



3. Governing equations
The governing equations for transient compressible fluid flow include the conservation
of mass and momentum equations. In a Lagrangian framework these can be written as:

1

r

Dr

Dt
þ 7 · v ¼ 0 ð11Þ

Dv

Dt
¼ gþ

1

r
7 · t2

1

r
7P ð12Þ

where t is time, g is the gravitational acceleration, P is pressure, v is the velocity vector
and D/Dt refers to the material derivative. The density r has been intentionally kept in
the equations to be able to enforce the incompressibility of the fluid. Using an
appropriate constitutive equation to model the shear stress tensor t, one can use
equations (11) and (12) to solve both Newtonian and non-Newtonian flows.

The momentum equations include three driving force terms, i.e. body force,
forces due to divergence of stress tensor and the pressure gradient. These must be
handled along with the incompressibility constraint. In a SPH formulation the above
system of governing equations must be solved for each particle at each time-step.
The sequence with which the force terms are incorporated can be different from one
algorithm to another. In the rest of this section treatment of viscous terms are
explained and the models used in this paper for non-Newtonian fluid flows are
briefly described.

3.1 Viscous terms
In the context of SPH method, several forms of viscosity terms were presented by Lucy
(1977), Wood (1981), Monaghan and Gingold (1983) and Loewenstein and Mathews
(1986). One of the most commonly used of such forms is obtained by writing the
momentum equation as (Schlatter, 1999):

Dv

Dt
¼ 2

j

X
mj

Pi

r2
i

þ
Pj

r2
i

þ
ij

Y0
@

1
A7iW ij ð13Þ

The main purpose of adding the artificial viscosity term
Q

ij was to model strong
shocks in astrophysical processes (Benz et al., 1990; Monaghan, 1992). Morris et al.
(1997) found that if this form is used to model real viscous terms, it may produce
inaccurate velocity profiles in some situations.

As the purpose of this work is to solve non-Newtonian fluid flows, a new description
of viscosity is presented that facilitates modeling of such flow problems.
Generally speaking, viscosity of incompressible generalized Newtonian fluids
depends only on the second principal invariant of the shear strain rate
D ¼ ð7vþ 7vT Þ=2, i.e. (Vola et al., 2004):

jDj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
i;j

X
DijD ij

s
ð14Þ
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In two-dimensions, assuming v ¼ uiþ vj, one gets:

D ¼
1

2
ð7vþ 7vTÞ ¼

›u
›x

1
2

›u
›y
þ ›v

›x

� �
1
2

›u
›y
þ ›v

›x

� �
›v
›y

2
664

3
775 ð15Þ

A classical constitutive law for these generalized Newtonian fluids is given by
(Vola et al., 2004):

t ¼ mðjDjÞD ð16Þ

This formulation can also handle visco-plastic fluids but special care should be given
as a multi-valued expression is normally used for such cases. For Newtonian fluids the
familiar form t ¼ 2mD is recovered.

Typical derivatives which appear in equation (15) can be evaluated in the SPH
context as:

›u

›x

� �
i

¼
j

Xmj

rj
ðuj 2 uiÞ

xi 2 xj
jrijj

dW

dr ij
ð17Þ

›u

›y

� �
i

¼
j

Xmj

rj
ðuj 2 uiÞ

yi 2 yj
jrijj

dW

drij
ð18Þ

where r ij ¼ r i 2 rj. Other derivatives can be calculated in the same fashion.
Consequently, the stress tensor (t) can be calculated for any specified constitutive law.
In this work, the divergence of the stress tensor in the momentum equation is obtained as:

1

r
7 · t

� �
i

¼
j

X
mj

ti

r2
i

þ
tj

r2
i

 !
7iW ðr ij; hÞ ð19Þ

where:

7iW ðr ij; hÞ ¼
dW

dr ij

1

jrijj
½ðxi 2 xjÞiþ ð yi 2 yjÞj� ð20Þ

It is noted that the dot product of the second order tensor t and the vector fW is a vector.
Below three different non-Newtonian fluid models of interest in this work are

described.
3.1.1 Power-law model. The shear stress tensor in the power-law model is expressed

by (Vola et al., 2004):

t ¼ 2mjDj
N21

D ð21Þ

where N is a model exponent parameter.
3.1.2 Bingham-plastic model. The visco-plastic fluids have an “un-sheared” or

“solid” zone under their yield stress point and their constitutive law represents a
multi-valued function. In fact, under their yield stress point tY they behave like a solid
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and above this point they behave like a Newtonian fluid with constant viscosity. The
constitutive law for these fluids is given by:

jtj # tY !D ¼ 0 ð22Þ

jtj . tY ! t ¼
tY

jDj
þ 2m

� �
D ð23Þ

In this paper, the solid zone is approximated via a highly viscous fluid whose viscosity
is much (say, a ¼ 100 times) greater than the main fluid. This condition is used as long
as stress is below the yield value, that is, 2amjDj # tY . Above this limit, the following
relations are used:

jDj #
tY

2am
! t ¼ 2amD ð24Þ

jDj .
tY

2am
! t ¼

tY

jDj
þ 2m

� �
D ð25Þ

In fact, jDj is calculated according to the gradient of velocity for each particle at each
time-step and then it is used in the above criterion.

3.1.3 Herschel-Bulkley model. The constitutive law for the Herschel-Bulkley model is
given by:

jtj # tY !D ¼ 0 ð26Þ

jtj . tY ! t ¼
tY

jDj
þ 2mjDj

N21

� �
D ð27Þ

It can be seen that the Bingham-plastic and the power-law models are two limit cases of
this model. In the case of N , 1, this formulation can simulate pseudo-plastic fluids
and for N . 1 it represents dilatant fluids. For this model, treatment of un-sheared
zone is similar to the Bingham-plastic model. But above the yield point, the model
resembles the power-law fluids. In a similar fashion to the Bingham model, the
multi-valued constitutive law for the Herschel-Bulkley Model is implemented as:

jDj #
tY

2am

� �
! t ¼ 2amD ð28Þ

jDj .
tY

2am

� �
! t ¼

tY

jDj
þ 2mjDj

N21

� �
D ð29Þ

Having computed the stress tensor t, its divergence can be estimated by equation (19)
and the momentum equations can be solved.

4. Solution algorithm
In this section, an algorithm is presented to show the sequence of computation of each
term in the governing equations. In this paper, a fully explicit three-step algorithm is
used. In the first step of this algorithm, the momentum equation is solved in the
presence of the body forces neglecting all other forces. As a result, an intermediate
velocity is computed as:
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u* ¼ ut2Dt þ gxDt ð30Þ

v* ¼ vt2Dt þ gyDt ð31Þ

where g ¼ ðgx; gyÞ represents the gravity acceleration. Our experience has shown that
it is important to impose the body forces in the first step of the solution algorithm
especially in highly viscous fluids. In the second step, the calculated intermediate
velocities are employed to compute jDj followed by the computation of divergence of
the stress tensor. Note that the divergence of the stress tensor is a vector S given by:

1

r
7 · t

� �
i

¼ S ¼ Sxiþ Syj ð32Þ

At the end of the second step, the velocity components of each particle is updated
according to:

u** ¼ u* þ SxDt ¼ ut2Dt þ gxDt þ SxDt ð33Þ

v** ¼ v* þ SyDt ¼ vt2Dt þ gyDt þ SyDt ð34Þ

At this stage, each particle is moved according to its intermediate velocity (u* * v* *)
and therefore its intermediate position is given by:

x* ¼ xt2Dt þ u**Dt ð35Þ

y* ¼ yt2Dt þ v**Dt ð36Þ

Thus, far, no constraint has been imposed to satisfy the incompressibility of the fluid
and it is expected that the density of some particles change during this updating. In
fact, with the help of the continuity equation one can calculate the density variations of
each particle as:

Dri

Dt
¼

j

X
mjðvi 2 vjÞ7iW ðr ij; hÞ ð37Þ

where ri and vi are the density and velocity of particle i. When two particles approach
each other, their relative velocity and therefore the gradient of kernel function become
negative, soDri/Dtwill be positive and ri will increase. Consequently, this will produce a
repulsive force between the approaching particles. In a similar fashion, if two particles
are repulsed from each other, an attractive force will be produced to stop this. This
interaction based on the relative velocity of particles and the resulting coupling between
the pressure and density will enforce incompressibility in the solution procedure.

The velocity field ðv̂ ¼ ðû; v̂ÞÞ which is needed to restore the density of particles to
their original value is now calculated. To do this, in the third step of the algorithm, the
momentum equation with the pressure gradient term as a source term is combined
with the continuity equation (11) as:

1

r0

r0 2 r*

Dt
þ 7 · v̂ ¼ 0 ð38Þ
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v̂ ¼ 2
1

r*
7P

� �
7t ð39Þ

to obtain the following pressure Poisson equation:

7
1

r*
7P

� �
¼

r0 2 r*

r0Dt 2
ð40Þ

Equation (40) can be discretized according to equation (10) to obtain the pressure of
each particle as:

Pi ¼
r0 2 r*

r0Dt 2
þ

j

X 8mj

ðri þ rjÞ
2

Pjrij ·7iW ij

jr ijj
2
þ h 2

0
@

1
A

j

X 8mj

ðri þ rjÞ
2

r ij ·7iW ij

jr ijj
2
þ h 2

0
@

1
A

21

ð41Þ

Using equation (41) for the pressure of each particle, one can calculate v̂ according to
equations (39) and (8) as:

v̂i ¼ 2Dt
j

X
mj

Pi

r*
2

i

þ
Pj

r2
j

 !
7iW ij ð42Þ

Finally, the velocity of each particle at the end of time-step will be obtained as:

utþDt ¼ u** þ û ð43Þ

vtþDt ¼ v** þ v̂ ð44Þ

and the final position of particles are calculated using a central difference scheme in
time:

xt ¼ xt2Dt þ
Dt

2
ðut þ ut2DtÞ ð45Þ

yt ¼ yt2Dt þ
Dt

2
ðvt þ vt2DtÞ ð46Þ

This completes the computations required for one time-step. The procedure should be
repeated for every other time-step till a desired time is reached.

4.1 Boundary conditions
There are several methods for modeling boundary conditions. Monaghan proposed to
cover solid boundaries with boundary particles which have 1/2 or 1/3 of the initial
spacing between the particles (Monaghan, 1992). For these boundary particles the
continuity and momentum equations are not solved. Boundary particles exert
repulsive forces on the fluid particles to prevent them from crossing the solid
boundaries. A second method assumes that solid walls act like a mirror. Therefore, if a
particle approaches a solid boundary its image also does so creating an equal force but
in opposite direction prohibiting the particle to penetrate the solid wall. In this work,
the method proposed by Koshizuka et al. (1995) is used where the solid wall boundaries

HFF
17,7

724



are represented by fixed wall particles. These wall particles behave entirely similar to
the inner particles and contribute to the solution procedure like others. So, the Poisson
equation (40) is also solved for these wall particles to calculate the increasing pressure
due to the approaching inner particles. Again, this increased pressure prevents the
inner particles to penetrate the solid boundaries. Velocities of wall particles are set to
zero at the end of each time-step to simulate a fixed wall. In this way, the wall particles
correctly resemble the no-slip condition.

No especial treatment was applied on free surface particles in the computational
domain. In fact, in the SPH method free surface is modeled naturally and this is one of
the main advantages of the method.

4.2 Determination of time-step size
Like other CFD approaches, the SPH method requires a reasonable number of particles
to achieve accurate results. Stability analysis is normally used to find the safe time-step
values. In this work, the time-step Dt is calculated so that it satisfies the following
Courant condition (Shao and Lo, 2003):

Dt # 0:1
h

Vmax
ð47Þ

where Vmax is the maximum particle velocity in the computation. The factor 0.1
ensures that the particle moves only a fraction (in this case 0.1) of the particle spacing
(h) per time-step. Another constraint on the time-step comes from considering an
explicit finite difference method simulating a diffusion problem. This gives the
following limit on the time-step:

Dt # b
h2

meff=r
ð48Þ

where b is a coefficient depending on the choice of the kernel type and particle
arrangement. b is usually found by numerical experiments and is of order 0.1. The
effective viscosity meff is calculated according to a simple Newtonian model. Obviously
the allowable time-step should satisfy both of the above criteria.

5. Test cases
In this section, three benchmark problems are studied to demonstrate the capability of
the proposed algorithm to solve non-Newtonian fluid flow problems. The first problem
involves free surface flow while the second problem deals with a confined flow
problem. Finally, the third test case involves interface between two fluids, a Newtonian
fluid and a non-Newtonian fluid.

5.1 The two-dimensional broken dam problem
The sudden collapse of a column of fluid on a horizontal surface, the so-called broken
dam problem, is a classical benchmark problem for assessment of free surface
modeling techniques. As shown in Figure 1, the problem consists of a rectangular
(H £ L) column of fluid confined between a fixed wall and a temporary wall (dam) and
a mild slope. At time t ¼ 0, the dam is removed allowing the fluid column to collapse
under the influence of gravity.

Here, the problem is solved for both Newtonian and non-Newtonian fluids.
Komatina and Jovanovic (1997) obtained the experimental data for the collapse of a
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water-clay mixture. In their study, the slope of the channel bed was 0.1 percent with an
initial column height of H ¼ 0.1 m and an initial column width of L ¼ 2.0 m. For the
Newtonian fluid, pure water is used while for the non-Newtonian fluid model the
volume concentration of the mixture is 27.4 percent which corresponds to a density of
r ¼ 1,200 kg/m3. The rheological parameters for various fluid models used in this
study are given in Table I.

In this simulation particles are used in a structural pattern with an initial spacing
L0 ¼ 5 mm, so that a set of 20 £ 400 particles is employed.

In Figure 2 the non-dimensional surge front positions of the collapsing dam are
plotted against the non-dimensional time t=

ffiffiffiffiffiffiffiffiffi
H=g

p
for various models

including Newtonian and three non-Newtonian fluids. The results obtained by

Figure 1.
Schematic of the breaking
dam problem
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Figure 2.
Non-dimensional surge
front for Newtonian and
various non-Newtonian
models
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Water Power-law Bingham plastic Herschel-Bulkley

m ¼ 0.001 N ¼ 0.15, m ¼ 1.74 ty ¼ 25, m ¼ 0.07 N ¼ 0.4, tY ¼ 3.5, m ¼ 0.25

Table I.
Rheological parameters
for Broken-dam problem
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Komatina and Jovanovic (1997) are also shown in the same figure. A close agreement is
observed between the experimental results and those obtained by the proposed
method. Figure 3 shows the shape of the free surface at various times.

5.2 Annular viscometer
In this test case, the tangential creeping flow in a viscometer made of two coaxial
cylinders is studied. As shown in Figure 4, the outer cylinder is kept fixed while the
inner cylinder rotates with a constant angular velocity v ¼ 1(1/s). Depending on the
rheological properties of the fluid, an analytical solution for this problem can be found.
For the power-law model the tangential velocity is given by (Bird et al., 1987):

uuðrÞ ¼ rv
R0

r

� �2=N

21

" #
R0

Ri

� �2=N

21

" #21

ð49Þ

When yield stress is involved in a fluid model, a rigid zone might appear near the outer
cylinder while the rest of the fluid behaves like a viscous sheared material. The radius
at which transition from solid to sheared zone occurs can be found for certain values of
the exponent N. For a Bingham fluid (Bird et al., 1987), the transition radius Ri is
obtained from:

R1

Ri

� �2

22 ln
R1

Ri

� �
2

2
ffiffiffi
2

p
mv

tY
þ 1

 !
¼ 0 ð50Þ

Then, the tangential velocity in the sheared zone, is calculated according to the
following equation:

uuðrÞ ¼ r

ffiffiffi
2

p
tY

4m

R1

r

� �2

22 ln
R1

r

� �
2 1

" #
ð51Þ

For a pseudo-plastic Herschel-Bulkley fluid, with N ¼ 0.5, the transition radius R1 is
solution of:

R1

Ri

� �4

24
R1

Ri

� �2

þ4 ln
R1

Ri

� �
2

8
ffiffiffi
2

p
m 2v

t2
y

2 3

 !
¼ 0 ð52Þ

and the tangential velocity in the sheared zone becomes:

uuðrÞ ¼ r

ffiffiffi
2

p
t2
Y

4m 2

3

4
þ

R4
1

4r 4
2

R2
1

r 2
þ ln

R1

r

� �" #
ð53Þ

5.2.1 Particle placement. Using different particle spacing in SPH is equivalent to using
different approximation orders in the discretization method. It is common in SPH to
arrange particles initially in a square pattern. In the present problem, however, as the
boundary has a circular shape, filling the domain with a square arrangement results in
the creation of sharp edges on the boundary. The particles at the sharp edges have less
neighboring particles thus are prone to generation of numerical errors which can
amplify. As momentum diffuses into the domain from the boundary particles, the
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Figure 3.
Shape of free surface at
various times
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presence of these boundary particles are significant and can delay the convergence. To
control this problem, it is required to decrease the time-step size. It is important that the
initial spacing between the particles must be nearly uniform. If in certain regions the
initial spacing is less than the other regions, it means that the particle density is not
uniform in the domain. To satisfy this condition, particles are placed on equi-centered
circles of a difference L0 (the initial spacing between particles) between their radii. The
tangential spacing of the particles on each circle is also L0. As L0/R becomes smaller,
the approximation becomes better.

Figure 5 shows the results obtained using the present SPH method (L0 ¼ 25 mm)
with the analytical solutions available for each case. It is seen that for this case the
solution is in close agreement with the analytical solution.

Figure 4.
Schematic of annular

viscometer problem
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5.2.2 Convergence study. It is expected that by decreasing the initial spacing of the
particles or increasing the number of particles the accuracy of the solution is
increased. To achieve a particle spacing independent solution, the spacing was
systematically reduced till further reduction does not alter the solution. For each
case, the spacing was reduced in three steps. Figure 6 shows a typical
convergence study and as can be seen the solution for L0 ¼ 15 and L0 ¼ 10 are
almost the same.

5.3 Gravity current of fluid mud on sloping bed
As a final test case, laminar gravity current of fluid mud on a mild inclined bed is
studied. The set up of this problem is shown in Figure 7 where all dimensions are
in meters and the bed slope is 1: 40. The actual laboratory flume used for the
experiment by Van Kessel and Kranenburg (1996) is 0.5 m wide. The mud fluid is
represented by a suspension of China-clay in tap water whose bulk density is
1,200 kg/m3. The flume is filled with tap water and is separated from the
suspension compartment by a movable weir. When the hydrostatic pressure of the
suspension at the bottom of the inflow compartment is equal to that of the tap
water in the flume, the weir is lifted up to the desired height, i.e. 5 cm. The water
level in the flume is kept constant by means of an overflow weir. The flow rate
was kept constant, i.e. 0.004 m3/s.

Van Kessel and Kranenburg presented experimental data for this problem and
also derived an analytical solution assuming Bingham plastic rheological model for
the fluid mud. They neglected sediment settling and also argued that the
interfacial shear stress between the mud layer and the overlying water can be
neglected.

Figure 6.
Effect of particle spacing
on the accuracy
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The rheological behavior of the suspension is modeled as a Bingham plastic as
defined by equation (22). The following empirical correlations are used for tY
and m:

tY ¼ c1N
C2 m ¼ mvð1 þ c3N

c4 Þ ð54Þ

where N is the volumetric concentration of clay defined by:

N ¼
r2 rv

rs 2 rv
ð55Þ

where r, rs and rw are bulk density of suspension, density of China-clay sediment
(2,590 kg/m3) and density of water. Van Kessel and Kranenburg suggested to use
c1 ¼ 832 Pa, c2 ¼ 3, c3 ¼ 206 and c4 ¼ 1.68. This means that the values tY ¼ 2.5 Pa
and m < 9mv are adopted here.

The density and velocity profiles at section A (Figure 7) with a distance 1.27 m from
the weir are compared with experimental data in Figure 8. Van Kessel and Kranenburg
observed that for high suspension densities (.1,150 kg/m3) interfacial mixing between
the suspension layer and overlying water layer is negligible. This is in agreement with
the assumption made in the present computations where no entrainment mechanism
was included.

The computed tangential velocity component along the slope bed is also in good
agreement with that of experimental both showing a partially plug-like profile in the
mud region. Figure 9 shows the progress of the mud flow along the bed at different
times. The time-step for solving this problem was set to Dt ¼ 0.0005. All computations
were performed on a P4 computer with a 2.4 GHz processor. For this problem, every 35
time-step took about 10 s.

An interesting aspect of the SPH method for this particular problem is that a
two-fluid system can be easily modeled and the interface between the two fluids can be
captured without extra treatments. To introduce a multi-fluid system, one only
requires to give proper physical properties for particles of each fluid.

Figure 7.
Definition of the problem
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6. Conclusion
In this paper, a fully explicit three-step SPH algorithm was developed for
simulation of incompressible Newtonian and non-Newtonian fluid flows. A new
approach for computation of viscous terms was described to simplify the
incorporation of shear strain for various non-Newtonian fluids. The new method of
treatment of viscous terms was validated by solving three 2D test cases involving
internal flow, free surface flow and interface between two fluids. Results show that
the proposed method provides accurate results for all test cases solved here while
requires no special treatment to deal with transition from viscous flow to solid
behavior and two-fluid systems.

Figure 8.
Variation of density (left)
and velocity (right) with
distance from the bed
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